Skip to main content

Why Software Engineering is Popular? | VCMIT


Why Software Engineering is Popular?


Here are important reasons behind the popularity of software engineering:




  • Large software – In our real life, it is quite more comfortable to build a wall than a house or building. In the same manner, as the size of the software becomes large, software engineering helps you to build software.
  • Scalability- If the software development process were based on scientific and engineering concepts, it is easier to re-create new software to scale an existing one.
  • Adaptability: Whenever the software process was based on scientific and engineering, it is easy to re-create new software with the help of software engineering.
  • Cost- Hardware industry has shown its skills and huge manufacturing has lower the cost of the computer and electronic hardware.
  • Dynamic Nature- Always growing and adapting nature of the software. It depends on the environment in which the user works.
  • Quality Management: Offers better method of software development to provide quality software products.


Comments

Popular posts from this blog

Create House Like Structure Perform Operations Program In C | VCMIT

Program to create a house like figure and perform the following operations.  Scaling about the origin followed by translation.  Scaling with reference to an arbitrary point. Reflect about the line y = mx + c. INPUT #include <stdio.h> #include <graphics.h> #include <stdlib.h> #include <math.h> #include <conio.h> void reset (int h[][2]) { int val[9][2] = { { 50, 50 },{ 75, 50 },{ 75, 75 },{ 100, 75 }, { 100, 50 },{ 125, 50 },{ 125, 100 },{ 87, 125 },{ 50, 100 } }; int i; for (i=0; i<9; i++) { h[i][0] = val[i][0]-50; h[i][1] = val[i][1]-50; } } void draw (int h[][2]) { int i; setlinestyle (DOTTED_LINE, 0, 1); line (320, 0, 320, 480); line (0, 240, 640, 240); setlinestyle (SOLID_LINE, 0, 1); for (i=0; i<8; i++) line (320+h[i][0], 240-h[i][1], 320+h[i+1][0], 240-h[i+1][1]); line (320+h[0][0], 240-h[0][1], 320+h[8][0], 240-h[8][1]); } void rotate (int h[][2], float angle) { int i; for (i=0; i<9; i++) { int xnew, ynew; xnew = h[i][0] * cos (angle) - h[i]

Software Engineering - Waterfall Model | VCMIT

Waterfall model Winston Royce introduced the Waterfall Model in 1970.This model has five phases: Requirements analysis and specification, design, implementation, and unit testing, integration and system testing, and operation and maintenance. The steps always follow in this order and do not overlap. The developer must complete every phase before the next phase begins. This model is named "Waterfall Model", because its diagrammatic representation resembles a cascade of waterfalls. 1. Requirements analysis and specification phase: The aim of this phase is to understand the exact requirements of the customer and to document them properly. Both the customer and the software developer work together so as to document all the functions, performance, and interfacing requirement of the software. It describes the "what" of the system to be produced and not "how."In this phase, a large document called Software Requirement Specification (SRS) document is created whic

Software Engineering - Agile Model | VCMIT

Agile Model The meaning of Agile is swift or versatile."Agile process model" refers to a software development approach based on iterative development. Agile methods break tasks into smaller iterations, or parts do not directly involve long term planning. The project scope and requirements are laid down at the beginning of the development process. Plans regarding the number of iterations, the duration and the scope of each iteration are clearly defined in advance. Each iteration is considered as a short time "frame" in the Agile process model, which typically lasts from one to four weeks. The division of the entire project into smaller parts helps to minimize the project risk and to reduce the overall project delivery time requirements. Each iteration involves a team working through a full software development life cycle including planning, requirements analysis, design, coding, and testing before a working product is demonstrated to the client. Phases of Agile Model